239-sliding-window-maximum
You are given an array of integers nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position.
Return the max sliding window.
Example 1:
Input: nums = [1,3,-1,-3,5,3,6,7], k = 3 Output: [3,3,5,5,6,7] Explanation: Window position Max ————— —– [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7
Example 2:
Input: nums = [1], k = 1 Output: [1]
My solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
class Solution(object):
def maxSlidingWindow(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
maxList = []
stack = []
maxNum = float('-inf')
for i in range(k):
stack.append(nums[i])
maxNum = maxNum if nums[i] <= maxNum else nums[i]
maxList.append(max(stack))
i = k
while i < len(nums):
out_num = stack.pop(0)
in_num = nums[i]
stack.append(in_num)
if out_num == maxList[-1]:
maxList.append(max(stack))
else:
bigger_num = max(in_num,maxList[-1])
maxList.append(bigger_num)
i += 1
return maxList
Sadly it’s out of time limit. It must because of the max
function.
Time Complexity: O(n*k) Space Complexity: O(n+k)
Best solution:
Use a supportive quene which is in a decrease sort.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from collections import deque
class MyQueue():
def __init__(self):
self.queue = deque()
def push(self,value):
while self.queue and value > self.queue[-1]:
self.queue.pop()
self.queue.append(value)
def pop(self,value):
if self.queue and value == self.queue[0]:
self.queue.popleft()
def front(self):
return self.queue[0]
class Solution(object):
def maxSlidingWindow(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: List[int]
"""
que = MyQueue()
result = []
for i in range(k): #先将前k的元素放进队列
que.push(nums[i])
result.append(que.front()) #result 记录前k的元素的最大值
for i in range(k, len(nums)):
que.pop(nums[i - k]) #滑动窗口移除最前面元素
que.push(nums[i]) #滑动窗口前加入最后面的元素
result.append(que.front()) #记录对应的最大值
return result
Time Complexity: O(n) Space Complexity: O(k)