222-count-complete-tree-nodes
222-count-complete-tree-nodes
Given the root of a complete binary tree, return the number of the nodes in the tree.
According to Wikipedia, every level, except possibly the last, is completely filled in a complete binary tree, and all nodes in the last level are as far left as possible. It can have between 1 and 2h nodes inclusive at the last level h.
Design an algorithm that runs in less than O(n) time complexity.
Example 1:
Input: root = [1,2,3,4,5,6] Output: 6 Example 2:
Input: root = [] Output: 0 Example 3:
Input: root = [1]
Recursion solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
class Solution(object):
def countNodes(self, root):
"""
:type root: Optional[TreeNode]
:rtype: int
"""
return self.count(root)
def count(self,root):
if not root:
return 0
leftCount = self.count(root.left)
rightCount = self.count(root.right)
sumCount = leftCount + rightCount + 1
return sumCount
Iteration solution(Use Stack):
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# Definition for a binary tree node.
# class TreeNode(object):
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
from collections import deque
class Solution(object):
def countNodes(self, root):
"""
:type root: Optional[TreeNode]
:rtype: int
"""
count = 0
if not root:
return count
queue = deque()
queue.append(root)
while queue:
length = len(queue)
for i in range(length):
cur = queue.popleft()
count += 1
if cur.right:
queue.append(cur.right)
queue.append(cur.left)
elif cur.left:
queue.append(cur.left)
return count
本文由作者按照 CC BY 4.0 进行授权